
&p.1:Abstract The endothelin peptide family consists of the
21 amino acid isoforms endothelin-1, endothelin-2, endo-
thelin-3, and sarafotoxin (a snake venom). Endothelin-1
has been isolated from the supernatant of endothelial cells
and has subsequently been shown to be the most potent
vasoconstrictor known to date and to be positively inotro-
pic. This review summarizes some of the current literature
pertaining to circulatory and myocardial effects of endo-
thelins. Exogenously adminstered endothelin-1 has been
demonstrated to increase peripheral resistance and blood
pressure in a dose-dependent manner. However, during the
first minutes of intravenous administration endothelins
also decrease peripheral resistance and blood pressure,
presumably due to the release of vasodilatory compounds
such as nitric oxide, prostacyclin, and atrial natriuretic
peptide. Endothelins appear to be involved in the patho-
genesis of salt-dependent and renovascular animal models
of experimental hypertension. Although endothelins ap-
pear to contribute to basal vascular tone, the role of endo-
thelins in the pathophysiology of human hypertension re-
mains unclear. In addition, a role has been suggested for
endothelins in specific vascular lesions and inflammatory
conditions (e.g., restenosis after coronary angioplasty,
atherosclerotic coronary lesions, acute myocardial infarc-
tion, and vasculitis, glomerulonephritis). Endothelins are
positively inotropic peptides in cardiac myocyte and papil-
lary muscle preparations. They have also been demonstrat-
ed to induce hypertrophy of cardiac myocyte and may
play an important role in ventricular processes that lead to
chronic cardiac failure. The pathophysiological relevance
of the endothelin system in human disease states is eluci-
dated using selective (ETA) and nonselective (ETA/B) in-
hibitors of the endothelin receptors.
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Endothelin peptide family

Since the discovery of endothelium-dependent relaxation
of vascular smooth muscle the vascular endothelium has
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increasingly been recognized as an important functional
unit involved in the regulation of vascular smooth muscle
tone [1]. Relaxation results from release of a labile endo-
thelium-derived relaxing factor which is probably identi-
cal to nitric oxide (reviewed in [2, 3]). In addition to en-
dothelium-derived relaxing factor, endothelium-derived
vasoconstricting factors with a characteristically slow on-
set and long duration of action have also been demon-
strated [4, 5]. In 1988 Yanagisawa et al. [6] isolated a va-
soconstrictive factor from the supernatant of cultured por-
cine endothelial cells and determined its amino acid se-
quence. It had 21 amino acid residues with free amino-
and carboxy-termini and 4 cysteine residues which
formed two disulfide bonds (positions 1–15 and 3–11)
with a molecular weight of 2492, which they named en-
dothelin (subsequently, endothelin-1). Endothelin causes
vasoconstriction of porcine right coronary artery seg-
ments, with an EC50 of 400 pM and a maximum tension
comparable to that in KCl-induced contraction [6]. Sara-
fotoxin, isolated from the venom of the burrowing asp
Atractaspis engaddensis, and also reported in 1988, has a
remarkable homology to endothelin isoforms 1–3 [7, 8].
Endothelin is formed by cleaving 164 amino acids from
the 203 amino acid preproendothelin [by means of specif-
ic endopeptidase(s)] resulting in big endothelin (39 amino
acids). Big endothelin is subsequently converted to endo-
thelin by means of an endothelin-converting enzyme. En-
dothelin is now known to be a ubiquitous autacoid that is
released from a number of endothelial cell sources as
well as from various renal, airway, and endometrial cell
lines [9]. Endothelin gene transcription can be regulated
in endothelial cells at the mRNA level by thrombin, ad-
renaline, angiotensin II, arginine vasopressin, transform-
ing growth factor β, the calcium ionophores A23187 and
ionomycin, phorbol esters, and shear stress; its release
can be inhibited by nitric oxide or atrial natriuretic pep-
tide [9]. Endothelins act as “autacoids,” i.e., in a auto-
crine/paracrine manner and not as a circulating hormone,
since plasma levels are very low, and endothelial cells
preferentially release the peptide in abluminal direction
[9]. The endothelin gene (encoding the 212 amino acid
precursor preproendothelin) has been localized to human
chromosome 6 and shown to contain five exons (nucleo-
tide sequences encoding the mature 21 amino acid endo-
thelin-1 are contained within the second exon) [10]. Sub-
sequently, three distinct human endothelin-related genes
(ET-1, ET-2, ET-3) have been cloned by screening a hu-
man genomic DNA library under low-hybridization strin-
gency [11]. For the purpose of the present report endothe-
lin-1 is designated as endothelin unless otherwise stated.

Circulatory effects of endothelins

In their initial report in 1988 Yanagisawa et al. [6] dem-
onstrated that endothelin-1 has a vasoconstrictive action
and increases blood pressure in rats when given systemi-
cally (at a dose of 1 ng i.v.) in vivo. The vasoconstrictive
effects of endothelin-1 in, for example, isolated porcine

coronary artery rings are elicited at low concentrations of
the peptide (EC50 of 400 pM), with a characteristically
slow onset and a long duration of action [6]. Long-term
intravenous administration of endothelin causes sus-
tained hypertension in rats, and endothelins are thought
to be involved in experimental models of hypertension
that are salt dependent (e.g., deoxycorticosterone acetate
salt hypertensive rats) [9]. In an experimental model of
renovascular hypertension (one kidney/two clip rats) en-
dothelins are suggested to be involved in the induction,
but not maintenance, of hypertension [9, 12]. However
endothelin-1 knockout mice have been shown to be mild-
ly hypertensive, and transgenic rats expressing the hu-
man endothelin-2 gene under the control of the human
endothelin promotor are normotensive [13, 14]. In ani-
mals with genetic manipulations of the endothelin gene
the unexpected blood pressure responses may be due to
counterregulation by other vasoactive systems or devel-
opmental defects. Endothelin-1 knockout mice have de-
velopmental defects of neural crest-derived craniofacial
and cardiovascular structures and additionally impaired
development of thyroid and thymus glands and impaired
systemic growth [13, 15]. In contrast, transgenic rats ex-
pressing the human endothelin-2 gene have no known
developmental defects but develop glomerulosclerosis
due to a auto-/paracrine action of the peptide [14, 16].
The endothelin-2 gene has recently been shown to coseg-
regate with blood pressure in an F2 population derived
from a cross of the Dahl salt-sensitive rat and the Lewis
rat, and the endothelin-3 gene cosegregates with blood
pressure and relative heart weight in inbred Dahl rats
[17, 18]. In patients with essential hypertension a moder-
ate association has been demonstrated between a single
base insertion in the untranslated region of exon 1 of the
ET-1 gene and diastolic blood pressure [19]. Endogenous
endothelin-1 has been shown to contribute to basal vas-
cular tone in man and these effects are mediated by both
endothelin receptors (ETA and ETB) [20, 21]. The endo-
thelin-induced vasodilation (either during the first min-
utes after administration or at very low doses in some
vascular beds) appears to be mediated by ETB and ETA
receptors and requires an intact capability for the forma-
tion of nitric oxide and cyclo-oxygenase products [6, 9,
22, 23]. In humans the number of ETA receptors predom-
inates over the number of ETB receptors (90% vs. 10%
in renal arteries, 92% vs. 8% in renal veins, 95% vs. 5%
in renal arcuate arteries, 85% vs. 13% in epicardial coro-
nary arteries, 100% vs. 0% in intrarenal and intramyo-
cardial resistance arteries and aorta) [24]. The effect of
stimulation of ETB receptors on vasomotion is mediated
by both nitric oxide release from endothelial cells (with
subsequent indirect vasodilation) and contraction of vas-
cular smooth muscle cells (direct vasoconstriction). Non-
selective blockade of ETA and ETB receptors may be less
efficacious in vivo than predicted from some in vitro da-
ta, because potentially beneficial effects of ETB receptors
located on endothelial cells are also blocked [25–27].

The circulatory actions of endothelins are complex
since endothelins have been shown both to sensitize vas-
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cular smooth muscle cells to vasoconstrictors such as
norepinephine, serotonin, and angiotensin II and to stim-
ulate the release of aldosterone, nitric oxide, prostaglan-
dins and atrial natriuretic peptide and inhibit the secre-
tion of renin from isolated juxtaglomerular cells [9].
However the physiological relevance of inhibition of re-
nin secretion from isolated renal juxtaglomerular cells by
endothelins is thought to be minor [12, 28].

A marked increase in the gene expression of ET-1,
ET-3, endothelin-converting enzyme 1, ETA, and ETB re-
ceptors has been demonstrated in rat carotid arteries after
balloon angioplasty, suggesting an active role of the en-
dothelin system in neointima formation [29]. Increased
levels of endothelin immunoreactivity have been demon-
strated in atherosclerotic coronary lesions of patients
with acute coronary syndromes [30].

On the other hand, the release of endothelin from aor-
tic endothelial cells by cytokines (e.g., tumor necrosis
factor α and interleukin 1β) suggests that endothelins
likely play a role in a number of vascular pathologies
and inflammatory conditions (e.g., glomerulonephritis,
vasculitis [31]).

The clinical implications of these findings in experi-
mental animals and of studies in humans suggests the
use of endothelin receptor antagonists or inhibitors of the
endothelin-converting enzyme for the treatment of hy-
pertension (e.g., salt-dependent forms, renovascular hy-
pertension), for coronary artery disease (acute coronary
syndromes, restenosis after coronary angioplasty), and
for vasculitis.

Myocardial effects of endothelins

Ishikawa et al. [32] were the first to demonstrate a posi-
tive inotropic effect of endothelin-1 in isolated guinea
pig left atria, with a slow onset, long-lasting mode of ac-
tion, and an EC50 of about 1 nM. Endothelin-1 has sub-
sequently been demonstrated to be a positive inotropic
compound in a multitude of cardiac preparations, includ-
ing isolated ventricular cardiomyocytes in vitro [33]. In
isolated adult rat ventricular cardiomyocytes endothelin-
1 has been demonstrated to be positively inotropic, with
a low EC50 of about 50 pM. This inotropic effect is me-
diated by sensitizing cardiac myocytes to intracellular
calcium [Ca2+]i, due in part to intracellular alkalinization
induced by stimulation of the sodium-proton exchanger,
and involves the stimulation of a pertussis toxin sensitive
G protein and subsequent activation of phospholipase C
[34, 35]. In human myocardium in vitro endothelin has
been shown to exert a positve inotropic effect via sen-
sitiziation of cardiac myofilaments to calcium and acti-
vation of the sodium proton exchanger [36, 37]. In con-
trast to the results obtained in vitro, clearly suggesting a
positive inotropic effect of endothelins, the studies in vi-
vo in rats, dogs, and cats yield contradictory results with
regard to cardiac inotropy [9, 33]. Most studies show
cardiac output to decrease with an increase in total pe-
ripheral resistance following an initial and short-lived in-

crease in cardiac output [9, 33]. Neubauer et al. [38]
demonstrated a parallel decrease in coronary flow and
cardiac performance in an isolated perfused rat heart af-
ter administration of endothelin, indicating a secondary
(ischemic) negative inotropic effect of endothelin. A re-
cent study using open-chest rats demonstrated that de-
spite a marked increase in peripheral resistance after ad-
ministration of endothelin, isovolumic LVSP (peak
LVSP) and the corresponding dp/dtmax (peak dp/dtmax)
values were unchanged [39]. Inhibition of coronary con-
striction by adenosine unmasked a positive inotropic ef-
fect of endothelin-1 in anesthetized rats [40]. In addition,
a positive inotropic effect was also demonstrated when
employing the ETB receptor agonist IRL 1620 since this
compound has less vasoconstrictory potency than endo-
thelin-1 [40, 41]. In addition to the inotropic effects of
endothelins, positive chronotropic and indirect (via myo-
cardial ischemia) and direct (QT prolongation) proar-
rhythmic effects have been demonstrated [42, 43]. A
highly selective ETA receptor antagonist LU 127043 has
been shown to completely prevent the ET-1 induced sud-
den (ischemic) death [44]. In line with this finding Koj-
ima et al. [45] demonstrated that the nonselective endo-
thelin receptor antagonist TAK-044 reduces infarct size
in rats, rabbits, and dogs when administered either be-
fore or after induction of acute myocardial infarction.
Coronary vasoconstriction induced by cytokine-stimulat-
ed release of endothelin-1 in hemorhagic shock can be
prevented by the nonselective endothelin receptor antag-
onist SB 209670 [46]. Endothelins also seem to be in-
volved in cardiac hypertrophy and may play a role in
cardiac failure [33, 36, 47, 48]. In rats in vivo cardiac en-
dothelin-1 gene expression is increased in animals with
pressure overload but not in animals with volume over-
load [49]. In deoxycorticosterone acetate salt hyperten-
sive rats the development of cardiac hypertrophy is sig-
nificantly attenuated by administration of an ETA recep-
tor antagonist [50].

Potential clinical implications of the above findings
are blockade of the endothelin system during acute myo-
cardial infarction, in order to prevent cardiac hypertro-
phy, and in the treatment of chronic cardiac failure.

Future prospects

The development of a variety of compounds selective for
ETA and ETB receptors with either agonistic or antagonis-
tic properties will facilitate experimental and clinical re-
search dealing with the role of endothelins in physiology
and pathophysiology/disease [51, 52]. An overview of
some of the most common endothelin receptor antagonists
and agonists is given in Table 1. In addition, IRL 1620 and
BQ 3020 have been used as ETB receptor agonists,
PD 142893, SB 209670, and TAK-044 as mixed ETA/B re-
ceptor antagonists, LU 127043 as ETA receptor antago-
nist, and IRL 1038 as ETB receptor antagonist; however,
IRL 1038 has recently been shown to have highly variable
affinities between batches (therefore IRL 1038 should no
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longer be used). Figure 1 gives a summary of major circu-
latory, myocardial, and renal effects of endothelins. As il-
lustrated in this figure and in the evidence presented
above, endothelins may be involved in acute and chronic
renal failure, including the hepatorenal syndrome, cyclo-
sporine nephrotoxicity, and glomerulonephritis, in (salt-
sensitive) hypertension and renal hypertension, in coro-
nary ischemia including myocardial infarction, in resteno-
sis, and cardiac failure. The broad availability of the above
receptor antagonists will allow the role of the endothelin
system to be defined in human disease and will clarify
whether blockade of ETA receptors or of both ETA and
ETB receptors should be preferred.
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